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Abstract
On the basis of the Mott criterion for metal–insulator transition (MIT), an
expression for the correlation length, identical to that for the coherence
length in the theory of superconductivity, is obtained. This correlation length
characterizes the size of an electron–hole pair (in an excitonic insulator) or the
effective Bohr radius (as, e.g., in doped semiconductors). The relation obtained
is used for calculation of the coherence length in vanadium dioxide. The
presence of two characteristic coherence lengths (ξ1 ∼ 20 Å and ξ2 ∼ 2 Å) is
found. This is associated with the specific features of the transition mechanism
in VO2: this mechanism represents a combination of the purely electronic
Mott–Hubbard contribution and the structural (Peierls-like) one. It is shown,
however, that the driving force of the MIT in VO2 is the electron-correlation
Mott–Hubbard transition.

1. Introduction

Metal–insulator transition (MIT) is one of the most vital and spectacular problems in condensed
matter physics. Recently this problem has received renewed attention, primarily due to the
discoveries of high-Tc superconductivity and colossal magnetoresistance in perovskite-like
metal oxide cuprates and manganites [1].

The Mott criterion plays a special role in this problem. It states [2] that

aH n1/3
c ≈ 0.25, (1)

where aH is the effective Bohr radius and nc is the critical carrier density at the transition. This
simple criterion provides a numerical prediction for the MIT in many different systems [3]—
from doped semiconductors and high-Tc superconductors (HTSC) to metal–ammonia solutions
and metal–noble gas alloys. That is why the problem of the criterion (1)—both experimental
measurements of nc, and more precise theoretical calculations of the constant in the right-hand
side—has received much attention in the literature; there are a huge number of works devoted
to this topic (see, e.g., [4] and references therein).
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However, the generally known example of the MIT in doped semiconductors (with an
increase in the impurity concentration) is far from being the only one. There are a lot of
materials (mainly compounds of transition and rare-earth metals) exhibiting a temperature-
induced MIT [1–3], likewise other usual phase transitions—superconducting, ferroelectric,
or magnetic. For transition metal compounds, there is no consistent and unified theory of
MIT, unlike the case for doped semiconductors, for which all is more or less clear, at least
conceptually [1–4]. Instead, there are a variety of models: the electron-correlation Mott–
Hubbard transition; the Peierls transition in quasi-one-dimensional systems with charge-
or spin-density waves; the Verwey transition (as in Fe3O4) involving charge ordering; the
Anderson transition due to disorder-induced localization, etc [1–3]. In the absence of exact
theories, MITs in real systems have been explained (often merely qualitatively) in terms of
the available models. For example, for vanadium dioxide there is still no consensus on the
description of the driving mechanism of the transition—either electron-correlation effects or
structural instabilities [5–9].

On the other hand, the scaling theory of MIT describes the critical behaviour of a system,
by analogy with the second-order phase transitions, on the basis of power functions of the
coherence length [10]. In general scaling theory, the main idea is that the spatial scale (size)
of correlations in a critical region increases infinitely. In this case, details of the system’s local
behaviour do not play an essential role, and the correlation length ξ , diverging at T → Tt ,
is the main and the only parameter of the theory [11] (Tt is the transition temperature). The
same behaviour of ξ in doped semiconductors is observed at n → nc, and the value of ξ (on
the insulating side) is equal to the localization radius R [10].

It is well known that in the theory of superconductivity (SC) a characteristic scale length
(along with the depth of penetration of the magnetic field) is the coherence length [12]:

ξ = 2h̄vF/π�, (2)

where h̄ is the Planck constant, vF = (h̄/m)(3π2n)1/3 is the Fermi velocity of electrons (m
and n are their mass and density, respectively), and � is the energy gap width.

In the present paper, on the basis of the Mott criterion, an explicit analytical expression for
the correlation length, coinciding formally with the expression (2) for the coherence length in
the theory of SC, is obtained. The approach based on the analysis of the correlation length is
further used for the description of the MIT in VO2 with the objective of clarifying the physical
mechanism of the transition in vanadium dioxide.

2. Doped semiconductors

In the simplest case of an uncompensated (e.g., n-type) semiconductor, the localization radius
coincides with the Bohr radius [2]

aH = εh̄2/m∗e2, (3)

where ε is the dielectric constant, and m∗ and e are the effective mass and charge of an electron.
The gap width for the Mott insulator, in the first approximation, is equal to the energy of
ionization of a hydrogen-like impurity � = Id = e2/2εaH , whence it follows (taking into
account equations (1) and (3) with ξ = aH ) that

ξ = 2h̄vF/(3π2)1/3�, (4)

which practically coincides with equation (2).
It should be emphasized that the intimate link of the MIT and SC phenomena is well known

and has been discussed in the literature [13]. In case of HTSC, for instance, this is connected not
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only with the presence of MIT in many metal oxide high-Tc materials, but also with the above-
mentioned profound interrelation between SC and MIT. The point is that, if a metal is prone to
dielectrization of the electronic spectrum, then this might suppress the transition into the SC
state (because of the competition of SC and Peierls instability), but also it might act in quite
the reverse way—i.e. promote the appearance of the HTSC properties [13]. The ‘symmetry’
of MIT and SC shows itself also in the fact that in one case a metal undergoes a transition into
the insulating state (electron–hole pairing), and in another case—into the SC state (electron–
electron Cooper pairing). The term ‘electron–hole pairing’ should be considered broadly here.
It implies not only excitonic insulators [14, 15], but, particularly, doped semiconductors too.
In the latter case, the ionized donor centres play the role of ‘holes’. Moreover, the equation for
the gap width of an excitonic insulator is absolutely identical to the corresponding equation of
the BCS theory [14], where the Debye frequency is replaced by the plasma frequency and the
constant of electron–phonon interaction is replaced by the constant of Coulomb interaction.
It is no surprise therefore that the expression for the correlation length for MIT, equation (4),
coincides with the formula for the coherence length for SC. The coherence length characterizes
the size of a Cooper pair, and ξ = aH in the insulating phase of a MIT material characterizes the
size of an ‘electron–hole’ pair. The only difference consists in the fact that, in equation (4), the
Fermi velocity corresponds to the metal state: vF ∼ (nc)

1/3, because in the ground, insulating
state (below nc), there are no free charge carriers and vF is hence not definite.

3. Vanadium dioxide

The above-described model can be applied also to materials exhibiting the temperature-induced
MIT (like in VO2), and not only to those exhibiting the concentration-induced MIT. Vanadium
dioxide at T < 340 K is a semiconductor; at T = Tt = 340 K the conductivity abruptly
increases by 4–5 orders of magnitude, and above the transition temperature VO2 exhibits
metallic properties [2]. It has been shown [16–21] that the transition in such compounds
can be initiated by an increase in the free charge carrier density without heating the material
up to T = Tt —under photo-generation of carriers [18, 19] or in high electric field, due
to injection, the Poole–Frenkel mechanism [17, 20, 21], etc. This is accounted for by
a field-induced increase in the charge carrier concentration which acts to screen Coulomb
electron–hole attraction, leading to the elimination of the correlation Mott–Hubbard energy
gap at T < Tt [16]. In particular, such a situation occurs upon switching in thin-film
VO2-based sandwich devices in high fields [17]. Furthermore, many authors consider the
switching effect in amorphous semiconductors (chalcogenide glasses) to also be associated with
MIT [22, 23]. In the case of switching, however, it is difficult to distinguish the electronic and
heat contributions, because one cannot exclude current-induced Joule heating of the sample.
Nevertheless, for VO2 the possibility of the electronically induced MIT has been proved
experimentally by means of avalanche carrier injection from Si into VO2 in the structures
Si–SiO2–VO2 [21]. The value of the critical density nc has been found to be of the order of
ns—the equilibrium electron density in the conduction band of VO2 in the low-temperature
semiconducting phase at T → Tt .

For VO2, ns = 1018 cm−3 (from the values of the resistivity ρ ≈ 20 � cm and the
mobility µ ≈ 0.3 cm2 V−1 s−1 [2]). Let us compare this value with the nc calculated from
equation (1). For ε = 100 [24] and m∗ = 3m [2], this yields aH = 17.7 Å (from equation (3))
and nc = 2.8 × 1018 cm−3, which is in good agreement with the experimental value (ns), in
spite of the roughness of the estimations and some simplification of the model.

The question arising, however, is: what is the physical meaning of the Bohr radius of
18 Å? Unlike the case for doped semiconductors, the localization radius of an electron on
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(a) (b)

Figure 1. The crystal structure of the semiconductor (a) and metallic (b) phases of VO2.
Distances are indicated in ångströms. Part (a) shows only displacements of the vanadium atoms
(schematically). The cell (V2O4) volume is 59 Å3.

vanadium atoms, R, is of order 1–3 Å (the atomic radius of vanadium is 1.34 Å [25], and
the mean distance V–V in VO2 is ∼3 Å [2]). One can assume that a characteristic length of
∼20 Å in this case is just the coherence length, which is not equal to the radius of localization.
(Note that the coherence length for MIT in VO2 was first introduced in [26, 27] by analogy
with SC, and the estimate of ξ was there even higher, ∼10−6 cm = 100 Å.)

The point is that the aforementioned analogy with SC—in the case of MIT in transition
metal compounds, particularly VO2—is not absolute. For superconductors � ≈ Tc, whereas
for MIT materials Eg �= Tt . For example, in vanadium dioxide the energy gap width is
Eg = 1 eV [2], and kTt = 0.03 eV. Therefore aH = 18 Å is just the coherence length, which,
as was said above, is not equal to R, i.e. to the size of an electron–hole (or e−–V+) pair.

The reason for this discrepancy, as we will see in the next section, is that the transition in
VO2 occurs in two stages. Firstly, when the temperature reaches T = Tt (or at n = nc), an
electronic Mott transition occurs, which then immediately initiates a distortion of the crystal
structure (figure 1) with the symmetry change from monoclinic to tetragonal [2, 5]. The
structurally conditioned band gap is Eg ∼ 1 eV, and the correlation-induced contribution to
this value is only � ≈ kTt . Thus, the Mott transition in the electron subsystem plays the role
of a ‘trigger mechanism’, which then initiates the structural (Peierls-like) phase transition.

4. Dual transition

We next support these speculations with direct calculations of ξ for VO2 from equation (4). For
� ∼ kTt (more exactly, � = (2π/γ )kTt = 3.53kTt [15] with ln γ = 0.577 being the Euler
constant), the result must be close to aH = 18 Å. On the other hand, for � = Eg = 1 eV,
that same formula should result in a ξ -value of the order of R ∼ 2 Å. For the calculation
of vF we need to know the value of n = nm , the metal-phase electron density, which, unlike
for doped semiconductors, is not equal to nc. In metallic VO2, one V atom donates one free
electron to the conduction band. Indeed, each ion of pentavalent vanadium gives five electrons
for chemical bonds; four of them complete p shells of two O2− ions, and the number of band
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electrons is thus 5 − 4 = 1. Then it is straightforward to calculate the density nm knowing the
vanadium dioxide specific gravity (4.34 g cm−3 [25]) or the unit-cell volume (see figure 1).
These calculations yield nm = 3.3 × 1022 cm−3, which is in quite good accordance with the
estimate of nm from the conductivity jump: nm = (104–105) × ns = 1022–1023 cm−3.

From equation (4), with n = 3.3 × 1022 cm−3, m∗ = 3m, and Tt = 340 K, the correlation
length is ξ = ξ1 = 15.7 Å, which is actually very close to the value obtained above (section 3):
aH = 17.7 Å. On the other hand, for � = Eg, we obtain ξ = ξ2 = 1.62 Å, i.e. of the order
of R. Note that, unlike in the scaling theory of MIT for doped semiconductors, for which
the difference between the values of ξ on the metallic and insulating sides of the transition
is due to compensation [10], in our case the presence of two coherence lengths is associated
with the special nature of the transition in vanadium dioxide. This specific feature consists
in the fact that the MIT in VO2 is not a purely electronic Mott–Hubbard transition. Nor is it
a purely structural Peierls transition [5, 6, 21]. Basically, the transition involves a complex
superposition of these two mechanisms.

The transition in VO2 from a metal (� = 0, ξ → ∞) to a semiconductor (� = Eg ,
ξ = R), with decreasing temperature, might be imagined as occurring through an intermediate
(virtual) state with � ∼ kTt and ξ = ξ1 = 15–20 Å. The modulation of the electronic
spectrum at this point results in a Peierls-like distortion of the crystal structure accompanied
by doubling of the lattice period (see figure 1(a)). This structural transition, in turn, results in
the complete stabilization of the insulating state with Eg = 1 eV and complete localization
of electrons on vanadium atoms. The intermediate state can be (conditionally) considered as
a state in which the electrons are localized only partly. In this case the localization radius
(exactly R, not the coherence length ξ1) can be estimated from the following considerations.
As has been noted in [4], for the description of a bound state, the expression for R via the
ionization energy (Id for a donor semiconductor) is more adequate than that via the effective
mass, i.e. R = e2/2ε Id . For the intermediate state of VO2, Id corresponds to the value of the
correlation gap kTt , and R will therefore be equal to 2.5 Å, which is approximately equal to
the above estimate of R (or ξ2 = 1.6 Å) for the ‘complete’ insulating state.

The authors of [8] have arrived at the same conclusion about the MIT in VO2 on the
basis of the data on temperature hysteresis. In this work, it has been shown that the MIT in
vanadium dioxide behaves like an electronic phase transition, i.e. that its initial stage is the
rearrangement of the electron system, and the changes inevitably appearing at this point in the
crystal lattice are only secondary. It should be noted that such a two-stage mechanism of MIT
is not a unique characteristic of vanadium dioxide. A similar situation arises in SmS [28, 29],
in which the transition also occurs in two stages—first, in the electron subsystem, and then in
the ion subsystem with the change of the crystal lattice parameter.

It is noticeable that the first stage of the MIT in SmS obviously displays the features of
the Mott transition1 which is confirmed by the equality of aH and the Debye screening length
at T = Tt [29]. This transition occurs at a critical density nc (which, as one can judge from
the data of [28, 29], obeys the criterion (1)) under the action of either pressure or temperature.
Similarly, in VO2 the MIT occurs at a certain n = nc, and it does not matter in what way this
transition is initiated—either under heating up to T = Tt (i.e. as the result of the equilibrium
thermal generation of carriers), or under photo-generation [18, 19], injection [21], or high-field
generation at switching [17, 20].

1 Such a description of the transition on the whole is surely oversimplified. A more sophisticated model of the MIT
in the rare-earth-metal mono-sulfides (chalcogenides) is based on the specific properties of f electrons (see 4.11 in
monograph [2], as well as [28, 29] and references therein).
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5. Conclusions

In concluding, we comment on the terminology used, namely on the terms ‘coherence length’
and ‘correlation length’. In most papers concerning the problem of MIT (and in the present
one, as well) the two terms are used alternately, as equivalent to each other. Meanwhile, the
term ‘coherency’ relates, apparently, only to superconductors, in which the electron system is
described by a unique wavefunction in the ground state (below Tc). For other phase transitions
(including the MIT) this is not the case. However, as shown above, this fact does not prevent
the use of the term ‘coherence length’ (at least, formally—bearing in mind the correlation
length) for the analysis of a physical mechanism of the transition.

Thus, in the present work the expression for the correlation length, coinciding formally
with the expression for the coherence length in the theory of SC, was obtained from the
Mott criterion. This relation was used to calculate ξ for vanadium dioxide; it was shown
that there exist two distinct coherence lengths. This is associated with the dual nature of the
transition, and the driving mechanism of the MIT in VO2 is the electronic Mott–Hubbard
transition. The electron-correlation contribution to the energy gap, corresponding to this
transition, is2� ∼ kTt ∼ 0.1 eV and ξ = 15–20 Å. The modulation of the electronic
spectrum results then in distortion of the crystal structure accompanied by formation of the
gap � ∼ Eg and by the complete localization of electrons onto vanadium atoms (ξ = 1–2 Å).

This structural transition is therefore not a reason, but is a consequence of the electronic
transition, as has been repeatedly confirmed experimentally [8, 19, 21].

Moreover, it appears that it is not even necessary for this electronic MIT in VO2 to be
accompanied by a structural change [30]. It is likely that this situation might take place when,
e.g., the MIT is initiated by picosecond and femtosecond laser pulses [18, 19], i.e. under non-
equilibrium conditions with possible formation of a metastable metallic phase. At least, as
has been noted in the work [19], ‘in this regime, the structural transition may not be thermally
initiated’. In fact, it is truly remarkable that the structural transformation can proceed at
all in this regime (for t ∼ 10−13–10−14 s!) Nevertheless, whatever it is, these experiments
convincingly support the main emphasis of our conclusion—that is, that the structural transition
may not be a first-cause impetus for the MIT in vanadium dioxide.
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